

 Bilkent University

 Department of Computer Engineering

Senior Design Project

Project Short-name: So FarM So Good

Low Level Design Report

Giray Baha Kezer, Fazilet Simge Er, Melih Ünsal, Kaan Atakan Öztürk

Supervisor: Prof. Dr. Halil Altay Güvenir

Jury Members: Prof. Dr. Özcan Öztürk, Prof. Dr. Uğur Güdükbay

Innovation Expert: Kerem Erikçi

February 17, 2020

This report is submitted to the Department of Computer Engineering of Bilkent University in partial

fulfillment of the requirements of the Senior Design Project course CS492.

Table of Contents

1.Introduction 3

1.1 Object Design Trade-offs 3

1.1.1 Usability vs Functionality 3

1.1.2 Security vs Memory 3

1.1.3 Robustness vs Cost 4

1.1.4 Extensibility vs Cost 4

1.2 Interface Documentation Guidelines 4

1.3 Engineering Standards 4

1.4 Definitions, acronyms, and abbreviations 5

2.Packages 5

2.1 Model Class Diagram 5

2.2 View Class Diagram 6

2.3 Controller Class Diagram 7

3.Class Interfaces 7

4.Glossary 17

5.References 18

1.Introduction

Blockchain idea was introduced in the early twentieth century. By blockchain,

both side of a trade doesn’t need any mediator to prove that this trade has occurred.

Nowadays, we use banks as a mediator in the trades. However, blockchain convert

the trades as a decentralized form so that everyone is able to see all the trades real

time, and this makes the trades more secure ever than before.

In Turkey, farmers, especially the small ones, have so many problems and this

situation causes our production in agriculture to decrease day by day. However, we

cannot put ourselves at risk for agriculture because agriculture constitutes around 13%

of the country’s exports. We also see that agricultural areas and the number of farmers

has decreased for the last 5 years. So, the problems of agriculture should be resolved

one by one and we plan to solve some problems of agriculture by So FarM So Good.

In this project, we use blockchain in the trades between the virtual cooperatives and

the farmers and between the farmers in cooperatives and the government. The aim of

these project is to add value to the agricultural economy of the country by increasing

the producers’ contribution to total production.

This web-based platform is going to combine small farmers so that they will be

able to sell their goods to the appropriate companies by the virtual cooperative we are

going to establish. Normally, some companies have some limitations when they are

aiming to buy goods from farmers and the farmers who are not able to produce under

the threshold that the companies put, sell their crops to the local landowners for less

that worth. By our virtual cooperative, they will be able to combine their crops and the

cooperative is going to sell the crops and pay to the farmers proportional to the amount

of products the farmers put into with a secure payment system which uses the new

trend: Blockchain.

1.1 Object Design Trade-offs

1.1.1 Usability vs Functionality

The platform must have ease of use for our main customers, farmers. Farmers should

be able to use this platform, which is a new technological move, easily. Thus, the UI

must be kept as simple as possible to increase ease of use, but this makes adding

more functionality to the system difficult.

1.1.2 Security vs Memory

In a blockchain project, security plays a big role. As the engineers coding the

blockchain system, we must ensure that even if a small part of our system is hacked

or the data it contains are changed, the system must not be affected and the data must

not be lost or get in the hands of irrelevant people. To be able to provide such a high

security, the blockchain system must be saved in every computer involved. This

makes the memory usage further increase as more data is added to the system.

1.1.3 Robustness vs Cost

Nearly in all software, bugs are a large part of the workload which comes with

development. Due to that, the process of bug-fixing costs a lot of time. But in a

blockchain system, bugs can be fatal. Therefore, we must make sure that the number

of bugs is as close as possible to zero, although it will cost a lot of precious time. We

will test the platform at various stages to hopefully circumvent this cost as much as

possible.

1.1.4 Extensibility vs Cost

For the platform to be open to easy integrations, the code must be written neatly and

the platform must have basic functionalities. For us to be able to do this, we must

spend more time on the project than simply writing a working code. Since as

engineering students writing a program the only cost of ours is time, it will cost us more

than usual for us to write an extensible code.

1.2 Interface Documentation Guidelines

Class: Name of the Class

Description of the class

Properties

Attributes, variables

Methods

Names of the methods and their descriptions

1.3 Engineering Standards

This report is written using IEEE format to write an organized report and meet

engineering standards. Also, UML diagrams are used to identify, visualize and

construct the project. They play an important role in the graphical representation of

our project.

1.4 Definitions, acronyms, and abbreviations

● UI: User Interface

● IEEE: The Institute of Electrical and Electronics Engineers

● UML: Unified Modeling Language

● MVC: Model-View-Controller

● P2P: Peer to Peer

2.Packages

Full Class Diagram

2.1 Model Class Diagram

2.2 View Class Diagram

2.3 Controller Class Diagram

3.Class Interfaces

SoFarMSoGood will be explained by documenting its most important methods and its

properties. Since we will make our project in MVC design pattern, there will be three

subsections as Model, View and Controller.

3.1 Model

Class: Actor

This class processes new blocks for commodities and assets.

Properties

int key - private key to traverse into blockchain blocks
String name- a string which holds name of the actor.
String email- A string which holds the email of the actor.
String password - A string which holds the password of the actor.
Product commodity- A product-based object to hold property inside value, harvest.
String assets - A string based made cryptocurrency of actor’s stakes.

Methods

getKey(): Returns the key of the actor.

getName(): Returns the name of the actor.

setName(String newName): Changes the name of the actor with the given newName.

getEmail(): Returns the email of the actor.

setEmail(String newEmail): It sets new assigned email to string.

getPassword(): Returns string based password.

setPassword(newPassword): It sets password with a new string value.

Class:Producer

Producer class is responsible for product-based operations, it means adding products,

selling products and taking Product object are operated by that class.

Properties

Product products[]: An array based product objects to hold products inside.

Methods

getProducts(): A method for taking products.

addProduct(newProduct): A method takes new products as parameter used for adding

new product amount.

Class: Cooperative

Cooperatives takes farmers products to pass the distinct quotas of companies.

Properties

String name: String based name property.

String key: String based private key property.

Producer members[Producer]: Producer based array holds members.

int interests[int]: Interest based integer array holds interests inside.

Amount amount[double]: Amount based double array holds amounts inside.

Methods

setCooperative(Copartner copartner): void

Class: Product

Objects of this class represents the real life products produced by producers.

Properties

int id: Integer based unique id property

String name: String based name property

String type: String based type property

String description: String based description explaining the product

double value: Double based value property

double amount: Double based amount property

Methods

getName(): A method for taking the name of the product.

getType(): A method for taking the type of the product.

setType(String newType): A method for setting the type of the product.

getDescription(): A method for taking the description of the product.

setDescription(String newDescription): A method for setting the description of the

product.

toString(): A method for printing the product.

getValue(): A method for taking the value of the product.

setValue(double newValue):A method for setting the value of the product.

getAmount(): A method for taking the amount of the product.

setAmount(double newAmount):A method for setting the amount of the product.

Class: Asset

The objects of this class represents a Product with an owner.

Properties

Actor owner: Actor based object showing the owner of the asset.

Methods

getOwner():A method for taking the owner of the asset

setOwner(Actor newOwner):A method for taking the owner of the asset

Class: Transaction

Objects of this class represent results of exchanges between producers and the

companies.

Properties

int id: Integer based unique id property

double newValue: Double based updated value of the transaction

Actor sender: Actor based sender property

Actor recipient: Actor based recipient property

Asset asset: Asset based property

Methods

getId(): A method for taking the id of the transaction

getValue(): A method for taking the value of the transaction

getSender(): A method for taking the sender of the transaction

getSender(): A method for taking the sender of the transaction

Class: TransactionPool

This class stores all transactions.

Properties

transactions[Transaction]: Transaction based array property holding the transactions

Methods

updateTransaction(Transaction transaction): A method for updating the transaction in

the pool

addTransaction(Transaction transaction): A method for adding a transaction to the pool

getTransactions(): A method for taking a transaction in the pool

clear(): A method for removing all the transactions in the pool

transactionExists(Transaction transaction): A method for controlling if a transaction

exists in the pool

Class:Block

Objects of this class stores the Transactions.

Properties

double timestamp: Double based time property showing the time of the creation of the

block

int nextHash: Integer based property to make a connection with the next block

int hash: Integer based property to encrypt the block

string data: A property that holding all the information about the block

Methods

toString(): A method to write the block

Class: Blockchain

This class stores the Blocks.

Properties

double timestamp: Double based time property showing the time of the creation of

blockchain

int previousHash: Integer based property to make a connection with the previous block

int hash: Integer based property to encrypt the blockchain

string data: A property that holding all the information about the object

Methods

toString(): A method to write the block

Class:P2PServer

This class represents a dummy server living in the connection established between the

pairs.

Properties

Blockchain blockchain: A blockchain based property

TransactionPool transactionPool: A trancationPool based object holding all the

transactions

Socket sockets[]: A socket based array property

Methods

listen(): A method to listen a socket

connectToPeers(): A method to connect to server

connectSocket(): A method to connect to socket

messageHandler(Socket socket): A method to handling the message coming from

Socket

sendChain(Socket socket): A method to send the chain to the appropriate socket

sendTransacion(Transaction transaction): A method to send the transaction

brodcastClearTransactions(): A method to send the clear the transactions

Class: Company

This class extends one Actor. It is a type of an actor and it is a part of transactions with

cooperatives or directly with farmers. Takes products and gives money commodities

exchanged with money and product assignments. Its transactions hold on blockchain

records.

Properties

Actor actor: Actor represent stakeholders could be processed transactions with

commodities

Transaction transaction: Transaction object holds transaction inside

Quality level: Level represent for product’s quality

Methods

validity(): returns boolean validity decision for company to be verified for transaction

Class: ActorHandler

This class implements user and actor duties

Properties

TransactionHandler: TransactionHandler

actorKey: int

actorCommodity: Product

Methods

addActorKey(key:int,name:String,email:String):void

removeUser(id:int):void

findActor(key:int,email:String):Actor

addPeerToP2PServer(Peer:peer, P2PServer : P2PServer)

Class:TransactionHandler

This class regulates transactions.

Properties

transactionRecord:Transaction<>

Methods

getTransaction(id): Transaction

provokeTransaction: void

getApproval():boolean

setApproval():void

setReject():void

Class:EndorsementPolicyBlockChain

This class regulates endorsement policy of the Blockchain.

Properties

formalPolicy:String holds policy variable for formal process

Methods

getformalPolicy:String represents formal policy getter method

setformalPolicy:void represent formal policy setter method

Class: Quality

This class implements levels within the Blockchain.

Properties

level:int

Methods

getLevel():int

Class:Copartner

This class implements sign transactions.

Properties

list:Arraylist

Methods

getSign():boolean

setSign():void

3.2 View

Class: LoginScreen

This class enables users a login screen interface.

Properties

name:String

password:String

key:int

Methods

signIn():void

registration():void

Class: HomePageBlockchain

This class enables user home page of the system.

Properties

ActorHandler: ActorHandler

page:frame

Methods

updatePage(frame:page):void

Class: CoPartnerPage

This class enables user CoPartnerPage interface.

Properties

coPartnerView:page

Methods

viewTransactionHistory():Transaction list

createTransactionButton(Transaction transaction): void

Class: P2PServerViewPage

This class enables users P2PServerViewPage interface.

Properties

ServerIDView: TextView

Methods

requestList():void

Class: ApprovalView

This class enables users ApprovalView interface.

Properties

name:String

keyID:int

Methods

signIn():void

signUp():void

Class: userMainPage

This class enables users userMainPage interface.

Properties

logoutButton:Button this button enables logout from page

Methods

-

Class: signUpScreen

This class enables users signUpScreen interface.

Properties

name:text-view represents name property of singed up user

password:int represents password of singed up user

email:text-view shows email of signed up user

signUpButton:button enables signed up button for user

Methods

signUp():boolean holds boolean decision inside represent signed or not

3.3 Controller

Class: TransactionHandler

This class manages and handles transactions

Properties

transactionRecord:Transaction<>

Methods

getTransaction(id): Transaction

provokeTransaction: void

getApproval():boolean

setApproval():void

setReject():void

Class: ActorHandler

This class actor of the

Properties

TransactionHandler: TransactionHandler

actorKey: int

actorCommodity: Product

Methods

addActorKey(key:int,name:String,email:String):void

removeUser(id:int):void

findActor(key:int,email:String):Actor

addPeerToP2PServer(Peer:peer, P2PServer : P2PServer)

addPeerToP2PServer(Peer:per,P2PServer:P2PServer)

4.Glossary

Hyperledger Composer: Hyperledger Composer is Blockchain Application Development

framework which simplify the blockchain application development on Hyperledger Fabric[1]

IEEE: IEEE, an association dedicated to advancing innovation and technological

excellence for the benefit of humanity, is the world's largest technical professional

society[2]

P2P Server: Peer-to-peer, or P2P in its abbreviated form, refers to computer

networks using a distributed architecture.[3]

5.References

[1] Blockchain Training Alliance. (2019). Global Glossary of Blockchain Terms 2.0 in 5

Languages. [online] Available at: https://blockchaintrainingalliance.com/pages/glossary-

of-blockchain-terms

[2] “History of IEEE,” IEEE. [Online]. Available: https://www.ieee.org/about/ieee-

history.html. [Accessed: 16-Feb-2020].

[3] “What are P2P (peer-to-peer) networks and what are they used for?,” Digital Citizen, 07-

Dec-2019. [Online]. Available: https://www.digitalcitizen.life/what-is-p2p-peer-to-peer.

[Accessed: 16-Feb-2020].

https://blockchaintrainingalliance.com/pages/glossary-of-blockchain-terms
https://blockchaintrainingalliance.com/pages/glossary-of-blockchain-terms

